
Preet Kang

April 2012

Stack & Heap

Demonstration

CPU Starts

 Startup File configures initial Heap & Stack Pointers

Main Allocates Memory

 Stack Pointer moves down based on variables declared in

main()

Task 1 Created

 Task 1 gets its memory from HEAP to be later used for its

STACK

Task 2 Created

 Another Task gets memory from the HEAP for its STACK

FreeRTOS Starts & T1 Starts
 main() now essentially gives up CPU and FreeRTOS will

never enter it again.

 FreeRTOS now manipulates STACK pointer based on which
task is currently in context.

T1 Allocates Memory On Stack

 T1’s STACK moves down to make room for local variables

Context Switch to T2

 FreeRTOS manipulates STACK pointer to run T2 so it is

looking at its vars.

T2 Allocates Memory on Stack

 When T2 allocates memory, it comes from its STACK

Interrupt

 When Interrupt occurs, the Hardware moves STACK Ptr to

its dedicated region

Any Task Allocating Heap

 Any task allocating memory from HEAP comes from global

Heap Memory

