Difference between revisions of "F20: Flappy"

From Embedded Systems Learning Academy
Jump to: navigation, search
(Team Members & Responsibilities)
(Team Members & Responsibilities)
Line 25: Line 25:
 
** Overall Software Stack   
 
** Overall Software Stack   
 
*  Brian Tran
 
*  Brian Tran
** Soundboard Driver
+
** Soundboard Driver and Hardware Integration
** Hardware Integration
+
** Overall Hardware Stack
 
** Case built and design
 
** Case built and design
 
** Code debug
 
** Code debug
 
*  Danny Nuch
 
*  Danny Nuch
** PCB design
+
** PCB design and Hardware Integration
** Hardware Integration
+
** Overall Hardware Stack
 
** Code debug
 
** Code debug
  

Revision as of 02:29, 18 December 2020

FLAPPY

Abstract

FLAPPY is one of the most anticipated gaming machines of the year 2020. Adopted the timeless design of the Gameboy Advance, it can play one and only one game(albeit the best game of all time in our opinion): FLAPPY BIRD. The player is advised to move the main character wisely (up and down) to NOT hit the beautiful green pipe. With simple gameplay and catchy music, it guarantees thousands of seconds of interesting game for the entire family.

Objectives & Introduction

Show list of your objectives. This section includes the high level details of your project. You can write about the various sensors or peripherals you used to get your project completed.

The objective of our project was to re-create the iconic Flappy Bird mobile game. Keystones of our designed included powering the project off the SJ2's microcontroller, using a 32x64 LED matrix as a display, including a BIG RED BUTTON, and having game audio.

Objectives:

  • Write drivers to display our bird design, obstacles, and score on the RGB LED matrix
  • Design a state machine to handle different game tasks such as the start screen, gameplay, and ending screen
  • Implement the game logic for movement of the car, collision detection, randomized obstacle generation, and score keeping system

Team Members & Responsibilities

  • Huy Nguyen
    • Git Admin
    • LED Matrix Driver
    • Game Graphic Driver
    • Overall Software Stack
  • Michael Wang
    • LED Matrix Driver
    • Obstacle Generations
    • Overall Software Stack
  • Brian Tran
    • Soundboard Driver and Hardware Integration
    • Overall Hardware Stack
    • Case built and design
    • Code debug
  • Danny Nuch
    • PCB design and Hardware Integration
    • Overall Hardware Stack
    • Code debug

Schedule

Week Date Task Status
1 10/13
  • Flappy project proposal approved by the instructor.
  • Completed
2 10/20
  • Order LED Matrix
  • Create GitLab repository
  • Completed
  • Completed
3 10/27
  • Received LED Matrix
  • Order Sound board
  • Overall Game-machine design
  • Completed
  • Completed
  • Completed
4 11/3
  • Order Button
  • Game-machine Design
  • Game Logic - Basic High-level Game design
  • Completed
  • Completed
  • Completed
5 11/10
  • Screen Driver - Basic Display
  • Game Logic - Bird location
  • Game Logic - Poles location
  • Completed
  • Completed
  • Completed
6 11/17
  • Soundboards interface
  • Button interface
  • Packaging design
  • Completed
  • Completed
  • Completed
7 11/24
  • Integrate basic parts
  • Order PCB board
  • Game case cut-out
  • Completed
  • Completed
  • Completed
8 12/1
  • Final Testing
  • Final Report
  • Final Wiki Page Update
  • Completed
  • Completed
  • Completed
10 12/16
  • PCB Tested
  • Final Packaging
  • Complete Wiki Report
  • Final Project Demo
  • Completed
  • Completed
  • Completed
  • Completed

Parts List & Cost

Part Name Quantity Cost Per Unit
SJ2 Board 1 $50
32x64 RGB LED Matrix 1 $22
5V Power Supply 1 $13.19
Adafruit Soundboard 1 $29.95
Adafruit Amplifier 1 $9.95
Speaker 2 $1.95
Red Button 1 $19.95
Wood 6 $9.95
Satin White Spray Paint 6 $5.98

Design & Implementation

The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.

Hardware Design

Discuss your hardware design here. Show detailed schematics, and the interface here.

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Implementation

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Testing & Technical Challenges

Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.

Include sub-sections that list out a problem and solution, such as:

<Bug/issue name>

1. Unit Testing vs Combined Design

We faced some unexpected issues when putting our project together. When testing each component individually they would preform to our expectations, but issues would arise when multiple components were used in tandem or on the PCB vs. direct GPIO connections.

2. Music/Sound Effect Playback

One of the issues we experienced was our speakers only outputting noise during final project testing. This issue did not show up when testing parts individually using the SJ2 as a 3.3V power source. The issue was however determined to be the SJ2. Although it correctly flashed code and ran the LED matrix or DAC+AMP individually without issue, when combined the DAC was unable to output music. Using a different groupmate's SJ2 solved the issue completely.


3. RGB LED Matrix Some Brighter LED Rows



Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

Upload a video of your project and post the link here.

Project Source Code

References

Acknowledgement

Any acknowledgement that you may wish to provide can be included here.

References Used

List any references used in project.

Appendix

You can list the references you used.